您现在的位置: 威尼斯网上开户 > 职场 >

职场 AI阅读病历,推荐临床诊断,准确度超过年轻医生!

时间:2019-02-16 06:23 点击:154 次

  对于一些凶险的、有可能威胁生命的疾病(例如急性哮喘发作、细菌性脑膜炎等),算法也同样表现出了强大的诊断性能。这在临床应用中有非常重要的意义,因为有了AI快速分诊的辅助,就可以让医疗服务的有限资源用于最需要帮助的患者。

  对儿科疾病的诊断是医疗中的一大痛点。一方面,儿童的抵抗力较弱,容易罹患多种疾病。另一方面,一些儿科疾病威胁程度较大,需要尽快得到治疗。能够快速、准确地对儿科疾病进行诊断,不但可以减少患者们的等待时间,还可以让那些情况危急的儿童及时得到医疗诊治。

  为此,研究人员整合医学知识和数据建模,提出了一个数据挖掘框架,以深度学习技术为基础,开发了一套自然语言处理系统。

  尤其值得一提的是,针对电子病历中医生记录的诊断文本,研究人员建立了一套自然语言处理模型进行信息提取。在这一阶段,两个研究机构的医生和科学家通力合作,由高级主治医师和信息学研究人员组成的专家团队手动给电子病历上的6000多张图表进行注释,对模型进行训练和检验。高质量的数据输入成为这套系统的关键优势。

  近年来,AI在基于医学图像的诊断上一次次超越人类。在放射学、病理学、眼科学、皮肤病学等影像数据的识别和筛查上,以机器学习为基础的诊断工具表现抢眼。不过,这些应用对于迅猛发展的AI技术来说,还只是小试身手。真正的考验,在于AI能否像人类一样,读懂疾病信息,而不是仅仅分析图片。在这项研究中,科学家们成功实现了这一目标,挖掘出了AI在辅助医生诊断上的巨大潜力。而他们所关注的,是对多种儿科疾病的准确诊断。

  为了解决这一痛点,研究人员们首先训练AI理解海量电子病历中的临床特征数据,这包括了医生输入的大量文本报告。光是这一步,难度就比分析影像数据要大多了!电子病历中职场,包括个人史、体格检查、实验室检验结果、用药和手术等许多方面职场,维度远远高于图像。而且职场,电子病历数据中往往存在一些系统差错,以及有意或无意的输入错误,都会给数据分析带来噪音。因此,怎么从电子病历中挖掘数据,用机器学习方法来进行准确的模式识别,这是一个挑战。

  “我们的工作为不久的将来提供一种准确快速廉价的儿科AI医生系统打下了坚实的基础。” 张康教授补充说。

  来源:学术经纬

  “我们的工作借助AI复制优质儿科医疗智力资源,增加优质儿科医疗资源供给,通过辅助赋能,提升儿科医疗行业效率和体验,并有望通过远程医疗和互联网医疗形成更大范围的示范推广,从而为基层儿科医生和年轻儿科医生提供辅助诊疗服务,为患儿家长提供智能自诊服务和权威的第二诊疗意见,避免误诊、漏诊造成的医疗风险。” 夏慧敏教授说。

  最后,要真正检验AI的实力,当然要让AI来和富有经验的人类医生比试一番了。研究人员拿出近12000份儿科患者的病历记录,并把20位“参赛”儿科医生按年资和临床经验高低分成5组,看看AI的成绩和哪一组医生接近。结果显示,AI模型的平均得分高于两组低年资医生,接近三组高年资医生。从这个结果来看,AI模型或许可以为年轻医生做诊治判断时助他们一臂之力了。

  有了良好的训练为基础,接下来,研究团队采用逻辑回归分类器的机器学习方式,建立了一套AI分诊系统。这套分类系统模拟人类医生问诊的框架,把电子病历中提取到的临床特征按人体各大系统来逐级划分。

  我们再次祝贺夏慧敏教授和张康教授的研究团队,也期待人工智能的实施可以在不久的未来为广大患者提供准确高效的诊断,彻底改变看病难看病贵的现象。

▲本研究团队的负责人夏慧敏教授(左)与张康教授(右)(图片来源:两位学者所任职科研院所官网)▲本研究团队的负责人夏慧敏教授(左)与张康教授(右)(图片来源:两位学者所任职科研院所官网)▲AI诊断框架的设计流程图(图片来源:参考资料[1])▲AI诊断框架的设计流程图(图片来源:参考资料[1])▲AI诊断系统的分诊层级(图片来源:参考资料[1])▲AI诊断系统的分诊层级(图片来源:参考资料[1])  声明:新浪网独家稿件,未经授权禁止转载。 -->

  具体来看,这套系统首先会按呼吸系统疾病、胃肠道疾病、全身性疾病等几大系统分,然后在每一类下面做细分。举例来说,在最常见的呼吸系统疾病中,这个系统会先按上呼吸道和下呼吸道进行区分,再按喉炎、气管炎、支气管炎、肺炎进行细分。经过检验,在每一层级,由AI做出的初级诊断在精确度上都接近检查医师做出的初级诊断。例如在患儿群体中最常见的急性上呼吸道感染,模型对病例的诊断达到95%的准确率。

  深度学习是机器学习的一个类别,使用多层神经网络进行推理,需要大量的训练数据来实现高精度。而这项研究的大量数据来自近60万名患儿、超过130万门诊人次的电子病历,让机器学习的技术提高有了极大保障。

  今日最新上线的《自然》子刊《Nature Medicine》上,发表了一项激动人心的成果:利用机器学习和自然语言处理等人工智能(AI)技术,广州市妇女儿童医疗中心的夏慧敏教授和加州大学圣地亚哥分校(UCSD)张康教授领衔的一支研究团队,合作带来一款全新的AI诊断工具。这项工具和人类医生一样,当填写完患者口述和医生体查文本型病历之后,工具可直接阅读医疗病历,自动分析患者病情,智能给出推荐诊断。这是该团队在《细胞》杂志封面发表有关AI图像诊断的论文后,不到一年时间里,在AI技术实施应用于医疗方面取得的另一个重要里程碑。它标志AI模拟人类医生进行疾病诊断时代的到来。

导语:“娴妃心机那么深,为何被袁春望步步下套?有个要害,被死死掐住了”

按照以往的套路,每一部宫斗,自然少不了坏人角色,而一度火爆的《延禧攻略》这部剧中,也有很多反面角色,傲气嚣张的高贵妃,借刀杀人的娴妃,心机叵测的纯妃,但是小编觉得,论坏人大boss,非袁春望莫属。

袁春望这个人物,虽是太监,却是皇子的身份,也因为这个反差,他一直对皇家恨之入骨,所以后期的袁春望,一步一步诱导娴妃,为自己复仇做嫁衣,还借机挑起娴妃和皇上的矛盾。但是这个细节,你肯定没有注意到,袁春望居然这么了解女人,难怪娴妃会如此生气。

1.袁春望的身份

我们都知道,古代的皇子就算不能当上帝王,但依身份地位,也应该享尽荣华富贵,袁春望最可喜的身份就是皇子,但最可悲的也是这个身份,虽是先帝所生,但无奈沦为净军。太监和皇子的身份差距如此悬殊,而且地位一个天上一个地上,袁春望又如何心服。

袁春望为了报心头之恨,后期开始在娴妃身边做事,渐渐地,袁春望觉得娴妃无法满足他的报复心理,所以他开始暗地挑起娴妃和乾隆之间的嫌隙,让两人有隔阂,而这一步是为了后期引诱和亲王篡位做铺垫,袁春望的手段确实是高深。

2.六宫之首

娴妃成为了皇后之后,也就意味着身上的背负,要比一个妃位高得多,皇后作为六宫之首,理应当好六宫的典范,所以后宫的大小事务,都要经过皇后之手,皇后整天劳于后宫事务,久而久之,也深感疲惫。

但是操劳带来的后果,就是面容渐渐衰老,而每一个女人最怕的就是这个老字,娴妃自然也不例外。富察皇后在世时,虽然也操理后宫,但是皇后性子不急不躁,而且懂得怡神养心,自然不容易老。后期的娴妃,越来越心生猜疑,加上操劳,自然老的快。

3.抓住要害

袁春望步步为营,终于靠自己之手,既笼络了珍儿,又利用四阿哥的嫉妒,设计娴妃和四阿哥,导致母子关系破裂。四阿哥是娴妃一手养大的孩子,所以这件事情对她的影响很大,她一度为四阿哥的事情生闷气。

袁春望看到娴妃生气,他的心理自然舒坦,他就是要先挑起娴妃的愤怒,才能越靠近复仇的目的。所以他就继续刺激娴妃,袁春望特意让婢女头戴鲜花,结果娴妃看到之后,更加生气。袁春其实就是抓住了娴妃的要害,女人怕老,娴妃也是,看到一个打扮得年轻惹眼的宫女,也难怪娴妃会如此气愤。

袁春望自从觉得璎珞背叛他之后,就一直想要报复璎珞,而且加上自己的仇恨,他的心里更加黑暗,但他一直没有找到合适的机会,一解心头之恨,他发现机会来了,是在发现了娴妃的弱点,娴妃成为皇后之后,就一直操劳后宫,身心疲惫,再加上娴妃越来越衰老,所以脾气也越来越暴。

袁春望就是抓住了娴妃怕老这一点,来制造娴妃的慌张感,而且加上皇上对娴妃已经有所误会,娴妃越来越忧虑,这样,袁春望在娴妃身边也容易办事,因为这个时期的娴妃是最脆弱的。你觉得袁春望是不是很懂女人呢?

2011年秋天在利比亚执行一项短期任务时,我在黎波里的丽笙酒店(Radisson hotel)瞥见了驻外记者玛丽·科尔文(Marie Colvin)。首先让我注意到她的是蒙在她左眼上的黑色眼罩,但让我停下来的却不仅仅是那块眼罩。就在上个月,叛军从利比亚最高领导人穆阿迈尔·卡扎菲的军队手中夺回了首都黎波里,新闻记者将酒店变成了媒体中心。报道设备将酒店堵得水泄不通,记者和工作人员从一个房间穿梭到另一个房间,写快讯、出镜直播。那样一种肾上腺素涌动的气氛,对科尔文来说却像是她的主战场,她属于那里。


当前网址:http://www.gga100.com/zc/127669.html
tag:职场,阅读,病历,推荐,临床,诊断,准确度,超过,

评论列表:

热门新闻